Home
  • Code of Conduct
  • Setup
  • Modules
    • Tool installation
    • Digital image basics
    • Thresholding
    • Morphological filters
    • Connected component labeling
    • Object shape measurements
    • Spatial calibration
    • N-dimensional images
    • Data types
    • Image data formats
    • Big image data formats
    • OME-TIFF
    • Remote (image) data access
    • OME-Zarr
    • Template
    • Quantitative image inspection and presentation
    • Correlative image rendering
    • Volume slicing
    • Projections
    • Volume rendering
    • Segmentation
    • Nuclei segmentation and shape measurement
    • Fluorescence microscopy image formation
    • Object intensity measurements
    • Global background correction
    • Neighborhood filters
    • Statistical (rank) filters
    • Convolutional filters
    • Median filter
    • 2D noisy object segmentation and filtering
    • Local background correction
    • Object filtering
    • Distance transform
    • Watershed
    • Nuclei and cells segmentation
    • Skeletonization
    • Similarity transformations
    • Running a script
    • Coding with LLMs
    • Recording a script
    • Variables
    • Strings and paths
    • Output saving
    • Functions
    • Loops
    • Batch processing
    • Batch exploration of segmentation results
    • Handling input parameters
    • Setting up a scripting environment
    • Deep learning instance segmentation
    • Manual segmentation
    • Segment Golgi objects per cell
    • Module overview
  • Extras
    • Reference
    • About
    • Discussion
    • Figures
    • Instructor Notes
  • License
  • Improve this page

Tool installation

Digital image basics

Thresholding

Morphological filters

Connected component labeling

Object shape measurements

Spatial calibration

N-dimensional images

Data types

Image data formats

Big image data formats

OME-TIFF

Draft: Remote (image) data access

OME-Zarr

Draft: Template

Workflow: Quantitative image inspection and presentation

Correlative image rendering

Volume slicing

Projections

Volume rendering

Segmentation

Workflow: Nuclei segmentation and shape measurement

Fluorescence microscopy image formation

Object intensity measurements

Global background correction

Neighborhood filters

Statistical (rank) filters

Convolutional filters

Median filter

Workflow: 2D noisy object segmentation and filtering

Local background correction

Object filtering

Distance transform

Watershed

Workflow: Nuclei and cells segmentation

Skeletonization

Draft: Similarity transformations

Scripting: Running a script

Scripting: Coding with LLMs

Scripting: Recording a script

Scripting: Variables

Scripting: Strings and paths

Scripting: Output saving

Scripting: Functions

Scripting: Loops

Scripting: Batch processing

Batch exploration of segmentation results

Scripting: Handling input parameters

Draft: Setting up a scripting environment

Draft: Deep learning instance segmentation

Draft: Manual segmentation

Draft: Segment Golgi objects per cell

Licensed under CC-BY 4.0 2019–2025 by NEUBIAS
Edit source file / Contributing / Source / Contact
Adapted from The Carpentries style version 9.5.3.